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Outline  

  Introduction/Motivation. 

  The Argonne Wakefield Accelerator. 

  “Multi-beam” control of electron beam. 

  Phase space exchange between two degrees of freedom. 

   Development of a single-shot longitudinal phase space diagnostics. 

   Production of a train of picosecond relativistic electron bunches. 

  Future plans. 
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Introduction 

  Particle accelerators produce  
and accelerate charged-particles  
beams up to relativistic energies.  

  Accelerators applications include 
–  Material sciences (electron microscopy  

and X-ray in accelerator-based light sources),  
–  Medical application,  
–  Nuclear and high-energy physics. 
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Beam & Phase Space: definitions 

  A particle is identify by  its coordinate and momentum in a 6D phase. 

  A beam is a collection of particle confined in space 

  Separate to 2D sub-phase space 

  Trace space coordinates: 

  Trace space coordinates of a particle downstream  
of an element can be obtained via 
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Statistical representation of a beam 
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  A beam can be represented by its second-order moments arranged as a   
covariance matrix or “ beam matrix” 

 

  Uncoupled 2D phase spaces ⇒ beam matrix is block diagonal. 

  The beam matrix can be propagated  
using the transfer matrix formalism 
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Emittance and Brightness: figure of merit of a beam 
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  Canonical emittance: 

  Trace-space emittance  
(experimentally measurable) 

  Normalized Brightness 

  Beam’s moment used to 
parametrize the beam 

  Courant-Snyder parameters 
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Goals of  research work 

  Explore phase space manipulations. 

  Multi-beam control of the transverse beam parameters. 
 
  Investigate phase space exchange between two degrees of freedom.  

  Develop a single shot longitudinal phase space diagnostics and produce 
a train of picoseconds electron bunches. 

7 
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Importance of phase space manipulation:  
next generation e+/e- linear collider 
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  International Linear Collider requirement (εx, εy, εz) = (8, 0.02, 3000) µm  

 

yββπε x

R NNfL
4

−+= fR is the repetition frequency. βx and βy are the 
twiss parameters . Assume ε= εx = εz 

3480 mµ=Γ

  An RF gun at Q=3.2nC  
gives (εx, εy, εz) = (6,6,13 ) µm  

  Redistributing the beam emittances within the 3 degrees of freedom  
⇒ suppression of the damping ring (a 3 km circumference ring!) 

⇒ 
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Importance of phase space manipulation: reducing the 
size of accelerator-based light sources 

  Compact (5 GeV) short-wavelength (λ=1 Å), x-ray free-electron lasers require 
 
 
 
or 
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(εx, εy, εz) = (0.1, 0.1, 10) µm  

  An RF gun at Q=1 nC gives (εx, εy, εz) = (1,1,0.1 ) µm  

  Only x-ray FEL (LCLS at SLAC) so far operates at 25 GeV 

31.0 mµ=Γ⇒ 
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Source of high-quality electron beams: the photoinjectors 
 
  Principle of operation: 

–  1+1/2 cell cavity resonating  
on TM010,π mode  

–  Laser illuminate photocathode 
on back plate 

–  Laser synchronized with e.m.  
field  

 
 

rf power from  
synchronized  

klystron  
 
  Capabilities 

–  e- beam is naturally bunch,  
–  e- bunch shape controlled 

by laser parameters,  
–  emittances, charge, size  

are variable   
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Beam dynamics simulations using Particle-in-Cell codes 

  Beam is represented by ensemble of macroparticles.  
 
 

  To compute space charge force (Fsc) we use the quasi-static approach. 
 1-  Lorentz transformation to rest frame 
 2-  Deposit the charge on 2D or 3D grid  
 3- Solve Poisson equation ⇒ electric field. 
 4-  Inverse Lorentz transformation to Laboratory frame ⇒ B and E fields. 
 5- Interpolate E and B field for each of the macro particle position  
  

  ASTRA for 2D cylindrically symmetrical beam low number of 
macroparticles (between 2000 and 5000). 

  IMPACT-T:  a fully 3D tracking code, can be run on cluster computers 
allowing a large number of macroparticles (~ 200,000). 

 

scext FF
dt
dP

+=
External field  
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An example of high-brightness photoinjector 
The Argonne Wakefield Accelerator (AWA) 

  Support advanced accelerator  
science experiments 

  Availability to external user (e.g. NIU) 
  Chosen for its versatility 
  Overview 

–  5-8 MeV rf gun 
–  Linac with 8 MV accelerating voltage 
–  Extensive diagnostics 

Constructed as  
part of my phD work 

Gun +  
solenoids linac solenoid spectrometer 

12 
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Simulation of AWA nominal setup 

Astra ( blue) VS Impact-T (red)  

linac gun linac gun linac gun 

linac gun linac gun linac gun 

Q=1nC 
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Generic beam diagnostics at AWA 

  Transverse beam density monitor 

Electron beam 
Ce:YAG screen 

CCD Camera 
Digitizer 

Vacuum Chamber 

Lens 

Video Signal 

Y(pixel) 

X(
pi

xe
l) 

2
50mm

mm50

  Integrating Current Monitor: Measure beam charge 

  Virtual Cathode: Get laser distribution on the photocathode 
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Generic beam diagnostics at AWA (cont) 

  Quadruple Scan Measure emittance 
–  Vary quadrupole  
–  Measure spot size downstream 

–  Simulated measurements 
retrieved 22.75/26.37 vs  
23.18/25.55 µm 

  Spectrometer: Measure beam energy 

p
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“Multi-beam” control of electron beam 

  Experiment reveals some interesting physics. 
  Interaction of multiple beams can be used to shape/control the parameters of a 
“main” beam 

  Multibeams also provide intricate distribution for precisely benchmarking 
multi-particle simulation algorithms. 

  Potential Applications 
–  Beam focusing. 
–  Multi-beam-based manipulation of a beam 
–  Mimicking and optimizing field-array emitter patterns. 
 

  Recent example: 
–  Halo removal at Tevatron, 
–  Electron lens at Tevatron. 
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How to generate a multi-beam electron bunch  
in a photoinjector? 

  mask in the laser path ⇒ generation of a  
multibeamlet distribution  

low charge 20 pC 
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Comparison simulation/experiments 
experiment   simulation 
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Insights from simulations 

  Lorentz force integrated over the longitudinal bunch distribution along beamline. 
  Most of beam-beam interaction occurs within 5 cm from the cathode surface. 
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Emittance Exchange Concept 
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zx κ=′Δxκδ =

Deflector Cavity Design and modeling 

TM110 mode 
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Phase space exchange theory 
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Limitations for exact emittance exchange 
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  Real particle distribution with incoming emittance (ex,ez) = (15.9,3.75)mm 

  Space charge does not prevent the minimization of emittance dilution  

Limitations for exact emittance exchange 
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Investigation of emittance exchange via start-to-end 
simulation of AWA 
  Cathode to exchanger entrance modeled with ASTRA output passed to IMPACT-

T for simulation of exchanger beamline 

  Optimized C-S parameters (space charge on) 

  Summary of emittance dilutions 
54.13;2.10 == xx βα m 
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Measured initial emittance partition 

Transverse emittance measured 
using Quadrupole scan technique  

Longitudinal emittance is 
inferred from the energy 
spread measurement~8mm 
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Phase space exchange: experimental plans  

  AWA can achieved an interesting emittance partition εz<εx 

  Next step was to design and construct a phase space exchange beamline 
–  Not possible due to space and time constraints. 
–  Construct simpler beamline to commission the hardware especially 

the deflecting cavity 
–  Configure the beamline for other purpose: a single-shot 

longitudinal phase space diagnostics 



28 

20o 

Deflecting Cavity 

a b 

Dipole 

YE6 
Dipole 

QE2 

Lc 

QE3 

Single-shot longitudinal phase space measurement  
  Map initial (z, d) longitudinal phase space to the transverse plane (x,y)  
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Theoretical background 
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Commissioning of the deflecting cavity 

Vertical displacement on 
screen versus phase of TDC 

Calibration procedure for 
TDC strength 

( ) 47.01.153sin75.13 +−= ϕδy )
360
230(φδ Δ=z

168.1 −= mκ

P= 40 kW 

  Developed beam-based calibration procedure to  
determine cavity deflecting strength 
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Commissioning of the deflecting cavity (cont) 

BEAM 

Screen Deflecting cavity 

Simulation 
scaling 

  Measured deflecting k as a function of input power is in good agreement with 
 numerical simulations. 
  The cavity was operated up to 800 kW but conditioned to its nominal 2.3 MW power 

without problem. 
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Dispersion measurements 

Dispersion measurement at YE6 for 
different QE1 strength  

Dispersion versus QE1 strength 

QE1=0.0T/m QE1=0.2T/m 

QE1=0.4T/m 

QE1=0.6T/m 

  Beam Based measurement of dispersion is used in order to 
indirectly tune the R56   

QE1=1.4T/m 
gives R56=0 

QE1=0.3T/m 
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Single shot measurement of the LPS 

z(mm) 

d 

Q=1.5nC 
E =14.6 MeV 

17.1
4.0

−=

=

m
m

κ

η

  Using calibration procedure, we can convert the configuration space coordinates into 
longitudinal coordinate and fractional momentum spread. 
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Generation of train of bunches 

  Generate bunch with tunable spacing. 4 pulses generated using a-BBO crystal  . 
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QE1=0.2T/m QE1=0.3T/m 

QE1=0.4T/m QE1=0.5T/m 

Generation of train of bunches measurement 

  Evolution of the longitudinal phase space associated to a train of four bunches as a 
function of the quadrupole QE1. 
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Generation of train of bunches: applications 

  Resonant excitation wakefield in dielectric-loaded waveguides 

  Production of narrow-band radiation in the Terahertz (THz) regime 

z-spacing vs. quadrupole strength Modulated distribution and  
corresponding spectrum 
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Summary of achievement and  future plans 
  Advanced beam controls in a photoinjector: 

–  Developed and tested a technique to use a multi-beam arrangement to 
control the beam properties via “multi-beam” interaction.  

  Emittance Exchange: 
–  Designed a emittance exchanger beamline and explore limiting effects,  
–  Installed and commissioned key components of the exchanger 
–  Verified initial emittance partitions of AWA 

  Longitudinal phase space diagnostics: 
–  Designed, build a single-shot longitudinal phase space diagnostics 
–  Use the beamline to produce a train of ps electron bunches 

  Future Plans: 
–  Developed longitudinal phase space diagnostics to 

•  Explore velocity bunching in photoinjector 
•  Beam dynamic in beam-driven wakefield accelerators 

–  Designed exchanger beamline will be installed at AWA 
•  Current shaping for enhancing performance of beam-drive wakefield 

acceleration 
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Thank you  
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Backup slides 
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Magnets modeling 

Magnetic Quadrapoles: 
Perform measurements of B field for the AWA quads  
 
 
 
 
 
 
Magnetic dipole: 
  Magnetic field profile and magnets are from RadiaBeam. 
  Ideal magnetic dipole have hard edge model. We model the magnetic 

dipoles with fringe fields using Enge Coefficients 
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Argonne Wakefield Accelerator  

rf-waveguide 

LPS beamline 

spectrometer 

 

YAG3 

YAG5 

YAG4 

YAG1 D1 
D2 

YAG6 TDC 

solenoid 

solenoids 
rf-gun Linac QE1 QE2 QE3 
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Transfer matrix of a realistic system 

• Use a realistic model to test for the exchanger validation. 

• Generate Initial particle distribution of 6 particles with offset in position and 
momentum with a reference particle X = 0. 

•   to get the six phase space R transfer matrix 
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RF deflecting Cavity 
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  Matrix inferred from particle tracking 

  Matrix analytically derived and evaluated for 

  
  Realistic model reproduce the matrix analytically derived using hard-edge 

elements 

Transfer matrix of a realistic emittance-exchanger beamline 
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Cavity off Cavity on 
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Simulations Tools cont… 

SUPERFISH used to 
generate E field 

POISSON used to 

generate B field 

E B 

Photo cathode( B = 0) 

Magnetic field in the solenoid 

Electric field in the rf gun π mode 


bucking matching focusing 
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